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Parallel reductive hydrocoupling of aldimines was performed to generate vicinal diamines using the spatially
addressable electrolysis platform (SAEP). The stainless steel cathodes and sacrificial aluminum anodes were
used in this electrosynthesis methodology. Introducing a large substituent on the imino nitrogen atom
efficiently controls stereoselectivity of the electroreductive coupling process. This method can now be applied
to the generation of libraries of 1,2-diamines, which further expands the techniques of parallel synthesis
and combinatorial electrochemistry.

Vicinal diamine functionality is found in many compounds of conducting copolymer film catalyst& Here, we demon-
of biological significancé:? For instance, 1,2-diamines are strate the application of the SAEP to the parallel generation
the key intermediates in the synthesis of bis-thioacetamido of vicinal diamines by cathodic hydrocoupling of imines.
chelating agents fof°™Tc, which have found extensive The electroreductive hydrocoupling of imines was first
applications as radiopharmaceuticaBiotin (or vitamin H), reported by Law in 1912 The yields of the vicinal diamines
an essential cofactor in carboxylase-catalyzed reactions,were in the 4-26% range. A copper cathode and divided
contains the 1,2-diamine moiety.Vicinal diamines have  cell setup were required in order to avoid anodic oxidation
also been used as ligands and chiral auxiliaries in variousof the cathodically generated species. A more efficient
asymmetric processgimcluding olefin dihydroxylatiohand procedure for the hydrocoupling of imines, developed by
epoxidatior? Diels—Alder® reactions, aldd? condensations,  Torii in 198922 was based on an undivided cell setup and
alkylation of aldehyde&! and cyclopropanation of allylic  offered moderate to good yields (580%). The electrolysis
alcohols!? was performed with a Pt/Pt electrode pair in the presence of

A number of methods for the preparation of diamines have TFA. The trifluoroacetate anion was decarboxylated at the
been developed. These include substitution femino anode, thereby preventing reoxidation of the cathodically
alcohol derivative$ and ring-opening of aziridinés or generated intermediates.
aziridinium iond® with nitrogen nucleophiles. Reductive ~ Our goals were to extend parallel electrosynthesis meth-
coupling of imines offers an attractive possibility to access odology to vicinal diamine synthesis and to optimize
a wide range of diamines. A variety of reductants have beenélectrolysis conditions using the SAEP. In the first trial, we
used for this purpose, viz., samarium(ll) iodidendium 17 followed the literature procedui®for the electroreductive
Pb/Al bimetallic redox systert, Zn—Cu couple!® niobium- hydrocoupling of iminel in THF (5 mol % PbBy, 1 equiv
(IV) chloride 2 low-valent titanium (LVT)? and cathodic ~ Of TFA, and 0.1 M BuNBr) with platinum electrodes under
coupling?? To the best of our knowledge, none of these galvanostatic conditions. However, no diamine product was
processes have been extended to parallel synthesis of diaminéetected while aniline and benzaldehyde were recovered at
libraries. This is due to the fact that, with the exception of the end of reaction. This failure is due to the extremely low
electrochemistry, most of these techniques involve strong current, a result of passivation of the counter electrode
reducing agents, making them impractical in a high- (platinum anode) by anodic polymerization of aniline,
throughput format. Parallel electrochemical reduction of resulting from hydrolysis of the iming, on the electrode
imines may provide a valuable addition to the rapidly surface. In the literature procedufeN-benzylimines were
expanding repertoire of high-throughput proceg3dstecent used and the hydrolyzed products were not oxidized as easily
contribution from our laboratory describes the design and as trifluoroacetate at the anode.
applications of the spatially addressable electrolysis platform We then resorted to a sacrificial anode mettiaal order
(SAEPY¥# for parallel electrosynthesis. Thus, libraries of to maintain high current density and to prevent the undesired
a-alkoxycarbamatesy-alkoxyamides, andi-alkoxysulfona- anodic side reactions (Scheme 1). For the platinum/aluminum
mides have been prepared using anodic oxidation in theelectrode pair, we obtained the diamine product from imine
SAEP format. A multicell electrolysis platform was used for 1 in 40—50% yield. The current density was maintained at
this purpose. We recently extended combinatorial electro- the set value (10 mA/cfat the beginning of reaction but
chemistry to parallel electrochemical generation of arrays gradually dropped toward the end. At the end of the process,

a polyaniline film was deposited on the surface of the

* To whom correspondence should be addressed. E-mail: ayudin@chem.alur’n'nurn anOde- To prevent the imine hydl’.OlySIS,. 4 A
utoronto.ca. molecular sieves were added to the reaction mixture.
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Scheme 1. Electroreductive Hydrocoupling of Imines trosynthesis gave results comparable (listed in Table 1) to

Cathode: results from the two-step method.
In summary, a new technique for parallel electrosynthesis
PbBr, + 2 —— PR® + 2Br of vicinal diamines has been developed. Screening of reaction
conditions enabled us to perform highly diastereoselective
n-Re NHR, parallel synthesis of diamines using inexpensive stainless
2§+ Pb® + 2CF3COH — R R, +Pb? + 2CF3COy steel as cathode and sacrificial aluminum as anode. By

Ri™ H NHR, introduction of a large substituent group on the imino
nitrogen atom, the stereochemistry of diamines can be
Anode: efficiently controlled.
213 A —— 213 AP + 2" Experimental Section

General. Aniline, benzhydrylamingy-toluenesulfonamide,

Fortunately, the current density was maintained under thesebenzaldehyde, 2-methoxybenzaldehyde, 4-methoxybenzal-
conditions at the set value of 10 mA/érthroughout the dehyde, 2-fluorobenzaldehyde, 4-cyanobenzaldehyde, 3-ni-
electrolysis, leading to a higher isolated yield of the diamine trobenzaldehyde, and 4-nitrobenzaldehyde were purchased
(>70%). TFA was used as a proton source. Other acids werefrom Aldrich Chemical Co. Stainless steel (type 304) and
tried but gave unsatisfactory results. aluminum (99+%) electrode materials were purchased from

The success of electrochemical reactions crucially dependsAlfa Aesar. Column chromatography was carried out using
on the nature of electrodes us&dVith the goal of applying 230—400 mesh silica getH NMR spectra were referenced
the coupling methodology in a parallel setting, we explored to residual CHG (6 7.26 ppm), and*C spectra were
materials less expensive than platinum. We chose stainlesgeferenced to CDGI(6 77.2 ppm). Cyclic voltammetry was
steel electrodes and were pleased to find results comparableonducted on a BAS CV-50W voltammetric analyzer (Bio-
to results with platinum electrodes. Optimized reaction analytical Systems, Inc.) equipped with a BAS C3 three-
conditions correspond to a current density of 10 mAlcan electrode cell stand.
temperature of 28C, a 0.2 M imine concentration, and a General Procedure for Aldimine SynthesisEqual molar
total charge of 1.2 F. Under these conditions, the parallel amounts of aldehyde and amine were mixed in diethyl ether,
electrosynthesis of a collection of up to 16 diamines (4 mmol and MgSQ was added. The mixture was stirred fbh at
scale) can be completed in 30 min. A common shortcoming room temperature followed by filtration of MgSOThe
of the conventional chemical dimerization of imines using filtrate was concentrated in vacuo, and the crude product
active metals is formation of amines as a result of competitive was recrystallized from absolute ethanol.
unimolecular reduction of imines. In our system, the amount  General Procedure for Diamine Synthesis.Parallel
of reduced product is less than 5%. One of the reasons forelectrosynthesis was conducted using the spatially address-
the suppressed unimolecular reduction pathway is the low able electrolysis platform (SAEP) (see ref 24 for a detailed
working potential due to the sacrificial nature of the anode description of the instrument). Tubular stainless steel cath-
that offers a high degree of selectivity. odes (7.5 crh surface area) were used. The electrolyte

Parallel electrosynthesis results for substrate® are solution in each 20 mL cell contained the substrate (0.2 M),
shown in Table 1. Although imin& gave a pooidl/meso TFA (0.2 M), PbBg (0.01 M), tetrabutylammonium bromide
ratio, in the cases of more sterically demanding benzhydryl- (Bus;N*Br~) as supporting electrolyte (0.1 M), and dry THF
benzylidene amine2—6, the dl isomers (determined by as solvent. The SAEP was submerged in a water bath to
NMR) of the corresponding vicinal diamines were formed maintain a temperature of 3. Electrolysis was carried
exclusively?® For the nitro-substituted iminesand 8 and out at constant current until 1.2 F was passed through each
N-tosylated imine9, no diamine products were detected. A cell. After electrolysis, the solvent was evaporated, 5 mL of
cyclic voltammetry (CV) study of substraté shows a 5% aqueous HCI was added, and the resulting mixture was
reversible redox couple at1.20 V (vs Ag/AgCl), while the stirred for 10 min. Subsequently, 5 mL of 10% aqueous
CV of substrate displays an irreversible reduction wave at NaOH was added and the solution was extracted with ether
—1.35 V (vs Ag/AgCl). Apparently, the nitro group is (10 mL x 3). The organic phases were combined and dried
reduced first under these conditions while the imine function over MgSQ. The solvent was evaporated, and the residue
remains intact. Since the reduction of the nitro group is was flash-chromatographed on a silica gel column with 1:9
reversible, the reduced compound may migrate to the anodeethyl acetate/hexanes as eluent.
and be reoxidized to regenerate the starting material, which General Procedure for One-Step Diamine Electrosyn-
was recovered at the end of electrolysis. The reason thethesis. Equal molar amounts of aldehyde and amine were
tosylated imine does not dimerize under these conditions ismixed in dry THF, and MgS©@was added to the 20 mL
most probably due to the reductive cleavage of theNS electrolysis cell. The mixture was stirredrfé h atroom
bond For ketimines, electrochemical reduction did not temperature followed by addition of TFA (0.2 M), PhBr
proceed to give the desired coupled products. Aliphatic (0.01 M), and tetrabutylammonium bromide (BiBr-) as
aldimines are also beyond the scope of this process. We havesupporting electrolyte (0.1 M). The electrolysis and product
also explored the possibility of one-step electrosynthesis of isolation were performed as described above.
1,2-diamines through in situ generation of the aldimine  N-Benzylidine aniline (1): *H NMR ¢ 6.5—7.5 (m, 10H),
precursors. For substratés-6, the one-step parallel elec- 8.45 (s, 1H).
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Table 1. Parallel Electrosynthesis of 1,2-Diamines from Imines

Substrate Isolated yield of dl:meso Substrate Isolated yield of Di:meso
diamine, % diamine, %
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a|solated yield for one-step parallel electrosynthesB0% of starting material was recovered.

1,2N,N'-Tetraphenylethane-1,2-diamine (mixture ofdl N,N’-Dibenzhydryl-1,2-bis(2-methoxyphenyl)ethane-
and mesoisomers): *H NMR 6 4.55 (bs,dl + mesoNH 1,2-diamine: *H NMR 6 2.4 (b, 2H), 3.38 (s, 2H), 3.43 (s,
anddl NCH), 4.96 (d,J = 12 Hz,mesoNCH), 6.5-7.5 (m, 6H), 4.51 (s, 2H), 6.67.4 (m, 28H).23C NMR § 55.11,
20H). 63.98, 64.03, 110.45, 126.54, 127.26, 127.62, 127.98, 128.08,
Benzhydrylbenzylidine amine (2): *H NMR 6 5.62 (s, 128.18, 144.24, 145.55, 158.69. HRMS (WVH)": 603.3035
1H), 7.2-7.9 (m, 15H), 8.45 (s, 1H)}3C NMR ¢ 78.03, (calcd mass 603.3012,,130N,0,). Mp 133-134°C.
127.09, 127.81, 128.54, 128.59, 128.64, 130.86, 144.04, 4-Benzhydryliminomethyl benzonitrile (5): *H NMR 6
160.89. Mp 94.5-95.0°C (lit.3! 95 °C). 5.66 (s, 1H), 7.2.8.0 (m, 14H), 8.45 (s, 1H}:*C NMR ¢
N,N'-Dibenzhydryl-1,2-diphenylethane-1,2-diamine:*H 78.16, 114.21, 118.623, 127.39, 127.71, 128.70, 128.98,
NMR 6 2.01 (bs, 2H), 3.66 (s, 2H), 4.42 (s, 2H), 6.7.4 132.50, 143.40, 159.06. Mp 137118°C.
(m, 30H).13C NMR ¢ 63.19, 65.36, 127.32, 127.95, 128.24,  N,N’-Dibenzhydryl-1,2-bis(4-cyanophenyl)ethane-1,2-
128.43, 128.80, 141.20, 143.15, 144.67. Mp 4685 °C diamine: *H NMR 6 2.0 (b, 2H), 3.75 (s, 2H), 4.35 (s, 2H),
(lit.32 162-163 °C). 6.8—7.6 (m, 28H)13C NMR ¢ 63.49, 64.71, 111.82, 127.04,
Benzhydryl-(4-methoxybenzylidine) amine (3):*H NMR 127.63, 128.70, 129.19, 132.25, 142.32, 143.44, 146.26.
0 3.86 (s, 3H), 5.62 (s, 1H), 6.96 (4= 8.7 Hz, 2H), 7.2~ HRMS (M + H)*: 595.2835 (calcd mass 595.2862,
7.5 (m, 10H), 7.84 (dJ = 8.7 Hz, 2H), 8.40 (s, 1H)'3C Ca2H3sN4). Mp 202-203 °C.
NMR ¢ 55,45, 77.90, 114.04, 126.99, 127.82, 128.49, 130.12, Benzhydryl-(2-fluorobenzylidine) amine (6): *H NMR
144.25, 160.16, 161.86. Mp 16607°C (lit.31 104-107°C). 0 5.65 (s, 1H), 6.9-8.3 (m, 14H), 8.79 (s, 1H}*C NMR 6
N,N'-Dibenzhydryl-1,2-bis(4-methoxyphenyl)ethane- ~ 78.53, 115.79, 124.41, 127.17, 127.76, 128.24, 128.29,
1,2-diamine: 'H NMR 6 3.62 (s, 2H), 3.78 (s, 6H), 3.88 128.59, 132.44, 154.19, 160.01, 165.03. Mp 946.0°C.
(s, 2H), 4.60 (s, 2H), 6:67.4 (m, 28H).*C NMR ¢ 55.27, N,N’'-Dibenzhydryl-1,2-bis(2-fluorophenyl)ethane-1,2-
63.40, 65.38, 113.44, 127.34, 127.99, 128.38, 129.24, 133.22diamine: H NMR 6 2.1 (b, 2H), 4.12 (s, 6H), 4.49 (s, 2H),
143.64, 145.15, 158.57. Mp 17475°C (lit.22174-175°C). 6.9-7.4 (m, 28H).13C NMR ¢ 64.05, 115.12, 115.57,
Benzhydryl-(2-methoxybenzylidine) amine (4):*H NMR 124.09, 126.98, 127.13, 127.79, 128.40, 128.62, 128.81,
0 3.88 (s, 3H), 5.67 (s, 1H), 6:8B.3 (m, 14H), 8.99 (s, 1H).  143.23, 144.68. HRMS (M- H)": 579.2633 (calcd mass
13C NMR 6 55,57, 78.58, 111.07, 120.83, 124.93, 126.93, 579.2612, GoHzaF2N7). Mp 169-170°C.
127.79, 127.87, 128.47, 132.05, 144.40, 156.77, 159.00. Mp  Benzhydryl-(3-nitrobenzylidine) amine (7): *H NMR
97.2-98.6°C (lit.23 99 °C). 0 5.68 (s, 1H), 7.28.3 (m, 13H), 8.50 (s, 1H), 8.68 (s, 1H).
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13C NMR ¢ 78.06, 123.29, 125.32, 127.40, 127.74, 128.71,

129.70, 134.04, 138.11, 143.40, 158.39. HRMS: 316.1211

(calcd mass 316.1212 ,§1:6N205). Mp 136-137 °C.
Benzhydryl-(4-nitrobenzylidine) amine (8): 'H NMR

0 5.68 (s, 1H), 7.27.5 (m, 10H), 8.01 (dJ = 8.8 Hz, 2H),

8.28 (d,J = 8.8 Hz, 2H), 8.51 (s, 1H):3C NMR 6 78.25,

123.96, 127.44, 127.74, 127.82, 128.68, 128.73, 129.25,

143.34, 158.66. Mp 135136 °C (lit.3! 134-135 °C).
N-Benzylidine-toluene-4-sulfonamide (9):H NMR o
2.44 (s, 3H), 7.28.0 (m, 9H), 9.03 (s, 1H)*C NMR 6

21,76, 126.63, 128.24, 129.27, 129.93, 131.42, 132.61,

135.02, 144.70, 170.23. Mp 16809°C (lit.34109-110°C).
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